Program Official
Principal Investigator
Nicholas J.
Mantis
Awardee Organization
Wadsworth Center
United States
Fiscal Year
2023
Activity Code
U01
Early Stage Investigator Grants (ESI)
Not Applicable
Project End Date
NIH RePORTER
For more information, see NIH RePORTER Project 3U01CA260508-02S1
High-Throughput Dried Blood Spot (HT-DBS) Technologies in SARS COV-2 Serology and Vaccinology
As the COVID-19 pandemic continues to spread across the United States it is imperative that we implement technologies to screen large swaths of the population for the presence of antibodies to SARS-CoV-2. Serological surveillance not only affords a measure of virus exposure within a community at large but also provides information necessary to predict outbreak dynamics. Furthermore, as our understanding of how humoral factors contribute to controlling (and possibly exacerbating) COVID-19, it will be essential to have methods in place to measure the “quantity” and “quality” of antibodies associated with both natural SARS-CoV2 exposure and candidate SARS-CoV-2 vaccines. This U01 proposal seeks to advance the use of dried blood spots (DBS) in conjunction with a Luminex-based microsphere immunoassay (MIA) to enable high-throughput (HT) population-wide serological surveillance for SARS-CoV-2. Specifically, the proposal will expand the HTDBS assay to capture the breadth and complexity of SARS-CoV-2 antibody responses following natural infection, and develop a high-throughput competitive immunoassay (CIA) as a surrogate measure of SARSCoV-2 neutralizing antibody titers in DBS. The proposed platform technologies to be developed at the Wadsworth Center will contribute directly to NCI’s mission to “… develop, validate, improve and implement serological testing and associated technologies…” to address the COVID-19 pandemic.
Publications
- Karger AB, Brien JD, Christen JM, Dhakal S, Kemp TJ, Klein SL, Pinto LA, Premkumar L, Roback JD, Binder RA, Boehme KW, Boppana S, Cordon-Cardo C, Crawford JM, Daiss JL, Dupuis AP 2nd, Espino AM, Firpo-Betancourt A, Forconi C, Forrest JC, Girardin RC, Granger DA, Granger SW, Haddad NS, Heaney CD, Hunt DT, Kennedy JL, King CL, Krammer F, Kruczynski K, LaBaer J, Lee FE, Lee WT, Liu SL, Lozanski G, Lucas T, Mendu DR, Moormann AM, Murugan V, Okoye NC, Pantoja P, Payne AF, Park J, Pinninti S, Pinto AK, Pisanic N, Qiu J, Sariol CA, Simon V, Song L, Steffen TL, Stone ET, Styer LM, Suthar MS, Thomas SN, Thyagarajan B, Wajnberg A, Yates JL, Sobhani K. The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. mSphere. 2022 Aug 31;7(4):e0019322. Epub 2022 Jun 15. PMID: 35703544
- Karger AB, Brien JD, Christen JM, Dhakal S, Kemp TJ, Klein SL, Pinto LA, Premkumar L, Roback JD, Binder RA, Boehme KW, Boppana S, Cordon-Cardo C, Crawford JM, Daiss JL, Dupuis AP 2nd, Espino AM, Firpo-Betancourt A, Forconi C, Forrest JC, Girardin RC, Granger DA, Granger SW, Haddad NS, Heaney CD, Hunt DT, Kennedy JL, King CL, Krammer F, Kruczynski K, LaBaer J, Lee FE, Lee WT, Liu SL, Lozanski G, Lucas T, Mendu DR, Moormann AM, Murugan V, Okoye NC, Pantoja P, Payne AF, Park J, Pinninti S, Pinto AK, Pisanic N, Qiu J, Sariol CA, Simon V, Song L, Steffen TL, Stone ET, Styer LM, Suthar MS, Thomas SN, Thyagarajan B, Wajnberg A, Yates JL, Sobhani K. The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. medRxiv : the preprint server for health sciences. 2022 Mar 14. PMID: 35262095