Principal Investigator

Kiran Kaur
Khush
Awardee Organization

Stanford University
United States

Fiscal Year
2023
Activity Code
R01
Early Stage Investigator Grants (ESI)
Not Applicable
Project End Date

A Noninvasive Integrated Genomic Approach for Early Cancer Detection and Risk Stratification after Transplantation

Solid organ transplant recipients are an ideal population in which to study the link between oncogenic viral infections and cancer due to the deep immunosuppression required to prevent allograft rejection, which increases their risk of developing clinical complications such as infections and cancer. Our long-term goal is to study the relations among immunosuppression, infections, and cancer using transplantation as a model system. Our central hypothesis is that novel biomarkers of cancer risk such as detection of circulating tumor DNA, sequencing of circulating cell-free DNA, and detailed immune profiling can be used for early cancer detection, to identify changes in the virome that precede malignant transformation, and to quantify overall immunosuppression. We will test our hypothesis via three specific aims: (1) To evaluate circulating tumor DNA for early detection of post-transplant malignancies, focusing on post-transplant lymphoproliferative disorders (PTLDs). We will evaluate the performance of CAPP-Seq, an ultra-sensitive assay for early cancer detection, in existing cohorts of over 2000 heart and lung transplant recipients followed at Stanford University and 6 collaborating sites. We will study patients with PTLDs to (a) determine the kinetics of emerging somatic variants preceding tumor development, (b) define the window for accurate early prediction of cancer risk via circulating tumor DNA, and (c) relate these findings to oncotropic viral expansion and immune system suppression. Similar exploratory analyses will be performed in patients with post-transplant lung and colorectal cancers. (2) To profile oncoviruses in cell-free DNA and evaluate integration sites as cancer risk predictors. To distinguish features in the oncotropic virome preceding malignant transformation, we will enrich oncoviral cell-free DNA to enable identification of human:virus gene fusion by deep sequencing, and will determine whether read coverage is consistent with genome integration or with free DNA. We will then profile DNA from primary tumors and cell-free DNA, and will compare integration site coverage in tumor subtypes. (3) To quantify associations among immunosuppression, viral infection and cancer development. We will perform novel immune profiling assays at defined time points following transplantation and will correlate results with development of acute rejection, opportunistic infections, and cancer. Specifically, we will measure circulating Anellovirus load, will infer immune cell subsets from RNA-seq, and will sequence the B-cell antibody heavy chain. We will determine how these results relate to administered immunosuppression, and will build mathematical models to predict risk of clinical complications. This contribution is significant because knowledge of the molecular signatures associated with cancer risk and early detection may lead to novel ways to prevent, monitor, and treat malignant disease. Our innovative approach, in which we will employ novel methods developed by our group to study a very high-risk transplant patient cohort, will lay the foundation for studies aimed at prevention and early detection of cancer as a means of improving clinical outcomes.

Publications

  • Sworder BJ, Kurtz DM, Alig SK, Frank MJ, Shukla N, Garofalo A, Macaulay CW, Shahrokh Esfahani M, Olsen MN, Hamilton J, Hosoya H, Hamilton M, Spiegel JY, Baird JH, Sugio T, Carleton M, Craig AFM, Younes SF, Sahaf B, Sheybani ND, Schroers-Martin JG, Liu CL, Oak JS, Jin MC, Beygi S, Hüttmann A, Hanoun C, Dührsen U, Westin JR, Khodadoust MS, Natkunam Y, Majzner RG, Mackall CL, Diehn M, Miklos DB, Alizadeh AA. Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas. Cancer cell. 2023 Jan 9;41(1):210-225.e5. Epub 2022 Dec 29. PMID: 36584673
  • Kurtz DM, Esfahani MS, Scherer F, Soo J, Jin MC, Liu CL, Newman AM, Dührsen U, Hüttmann A, Casasnovas O, Westin JR, Ritgen M, Böttcher S, Langerak AW, Roschewski M, Wilson WH, Gaidano G, Rossi D, Bahlo J, Hallek M, Tibshirani R, Diehn M, Alizadeh AA. Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell. 2019 Jul 25;178(3):699-713.e19. Epub 2019 Jul 4. PMID: 31280963
  • Moding EJ, Liu Y, Nabet BY, Chabon JJ, Chaudhuri AA, Hui AB, Bonilla RF, Ko RB, Yoo CH, Gojenola L, Jones CD, He J, Qiao Y, Xu T, Heymach JV, Tsao A, Liao Z, Gomez DR, Das M, Padda SK, Ramchandran KJ, Neal JW, Wakelee HA, Loo BW Jr, Lin SH, Alizadeh AA, Diehn M. Circulating Tumor DNA Dynamics Predict Benefit from Consolidation Immunotherapy in Locally Advanced Non-Small Cell Lung Cancer. Nature cancer. 2020 Feb;1(2):176-183. Epub 2020 Jan 20. PMID: 34505064
  • Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature biotechnology. 2019 Jul;37(7):773-782. Epub 2019 May 6. PMID: 31061481
  • Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, King DA, Steen CB, Macaulay CW, Schultz A, Nesselbush MC, Soo J, Schroers-Martin JG, Chen B, Binkley MS, Stehr H, Chabon JJ, Sworder BJ, Hui AB, Frank MJ, Moding EJ, Liu CL, Newman AM, Isbell JM, Rudin CM, Li BT, Kurtz DM, Diehn M, Alizadeh AA. Inferring gene expression from cell-free DNA fragmentation profiles. Nature biotechnology. 2022 Apr;40(4):585-597. Epub 2022 Mar 31. PMID: 35361996
  • Schroers-Martin JG, Soo J, Brisou G, Scherer F, Kurtz DM, Sworder BJ, Khodadoust MS, Jin MC, Bru A, Liu CL, Stehr H, Vineis P, EPIC Consortium, Natkunam Y, Teras LR, Song JY, Nadel B, Diehn M, Roulland S, Alizadeh AA. Tracing Founder Mutations in Circulating and Tissue-Resident Follicular Lymphoma Precursors. Cancer discovery. 2023 Jun 2;13(6):1310-1323. PMID: 36939219
  • Goldberg JF, Truby LK, Agbor-Enoh S, Jackson AM, deFilippi CR, Khush KK, Shah P. Selection and Interpretation of Molecular Diagnostics in Heart Transplantation. Circulation. 2023 Aug 22;148(8):679-694. Epub 2023 Aug 21. PMID: 37603604
  • Lynch RC, Ujjani CS, Poh C, Warren EH, Smith SD, Shadman M, Till B, Raghunathan VM, Alig S, Alizadeh AA, Gulhane A, Chen DL, Tseng Y, Coye H, Shelby M, Ottemiller S, Keo S, Verni K, Du H, Vandermeer J, Gaston A, Rasmussen H, Martin P, Marzbani E, Voutsinas J, Gopal AK. Concurrent pembrolizumab with AVD for untreated classic Hodgkin lymphoma. Blood. 2023 May 25;141(21):2576-2586. PMID: 36913694
  • Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, Schultz A, Jin MC, Scherer F, Garofalo A, Macaulay CW, Hamilton EG, Chen B, Olsen M, Schroers-Martin JG, Craig AFM, Moding EJ, Esfahani MS, Liu CL, Dührsen U, Hüttmann A, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nature biotechnology. 2021 Dec;39(12):1537-1547. Epub 2021 Jul 22. PMID: 34294911