CURRENT ISSUES IN TISSUE RESOURCES
William E. Grizzle MD, PhD
Walter Bell MD
Kathy Sexton MS
Department of Pathology
UAB wgrizzle @uab.edu

I want a whole brain
I want 500 samples of synovial cell sarcoma
I want any breast tumor
I want 10 cm of normal ascending aorta removed at surgery
I want a whole spinal column
I want 500 gram breast carcinoma
I want breast, lung, pancreatic carcinoma with 100%, 75%, or 50% cellularity
I want a whole beating heart
I want a breast carcinoma processed within 5 minutes of removal from body

Frequently a request for tissue is not understood by the requestor at the time it is made! Try to discuss with investigator to make the request “real.”
Some requests are impossible, very rare, unlikely; for others, you have to stand in line.

ISSUE #1-NEOADJUVANT THERAPY
Many tumors are treated prior to surgical removal. This definitely changes the biology of the tumor. Cellularity is reduced and all types of cells respond differently to neoadjuvant therapy (e.g., stem cells may be increased).
ISSUE #1b- REQUESTS SHOULD BE SPECIFIC. “TUMOR” BENIGN? SARCOMA? DUCTAL?

ISSUE 2-WITH BETTER SCREENING, TUMORS ARE SMALLER OR MAY BE IN SITU CARCINOMAS; SAMPLES FOR RESEARCH USUALLY ARE NOT AVAILABLE FROM SMALL TUMORS OR IN SITU DISEASE. REQUESTS FOR LARGE SAMPLES USUALLY ARE MET ONLY AFTER REQUESTS FOR SMALL SAMPLES ARE FILLED-MAKE YOUR METHODS MICRO-.
I want a whole brain

ISSUE 3 - DIAGNOSTIC NEEDS ALWAYS COME FIRST.

I want a whole beating heart

I want 10 cm of normal aorta removed at surgery

ISSUE 4 - MAKE REQUESTS REASONABLE. 500 CASES OF A VERY RARE TUMOR WOULD NOT BE MET EVEN IF THEY WERE AVAILABLE.

I want 500 samples of synovial cell sarcoma
I want a whole spinal column

ISSUE 5- WHILE TISSUE MIGHT BE AVAILABLE THE EFFORT NEEDED TO OBTAIN THE TISSUE MIGHT NOT BE.

I want a breast carcinoma processed within 5 minutes of removal from body

ISSUE 6- IT TAKES TIME TO PROCESS TISSUES; ABOUT 15-20 MINUTES ARE REQUIRED FOR JUST 1 OR 2 ALIQUOTS. IS RAPID PROCESSING REALLY NECESSARY FOR YOUR STUDY.
ISSUES IN TISSUE RESOURCES

Processing

Time from removal from patient until tissue is embedded in a paraffin block or frozen

Inside operating room | Outside operating room

T_1 = warm ischemia with vascular system compromised

T_2 = specimen in operating room

T_3 = time after leaving operating room until fixation

T_4 = time of fixation or freezing

T_n = multiple processing times leading to embedding as paraffin block

WHAT DO WE KNOW ABOUT mRNA AND TIME AFTER TISSUE REMOVAL FROM THE BODY?

NEEDLE BX VS SURGICAL REMOVAL

For surgical removal there is warm ischemia while the organ has its vascular system compromised at body temperature. Probably most genes with unstable mRNA decay during this period.
For surgical removal, 20-30% of genes have increased expression in 1st hour after removal of tissue from the body due to stress genes. Most other genes do not change their expression. If mRNA is intact immediately after surgery, in most cases, it remains intact but may decline in quality as measured by RIN. The hope is the quality is adequate.

Special cases- prostates removed robotically
At least 1 hr added to warm ischemia time compared to non-robotic surgery.
Is the mRNA useful?

Correlation in total RNA isolated from snap frozen vs paraffin embedded ovarian endometriod carcinomas (#7) in the MA-RT-Q-PCR analysis of 90 genes of Wnt-hedgehog pathway or related

\[R^2 = 0.85 \]
\[r = 0.92 \]

BIAS IN TISSUE RESOURCES

Many proteins may degenerate after tissue is removed from the body; of special concern are phosphoproteins perhaps due to the action of phosphatases.
Ischemic time
(Animal models, human xenografts)

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Ischemic time (hrs)</th>
<th>Std dev/ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>pERK</td>
<td>0.335 0.213 0.201</td>
<td>30%</td>
</tr>
<tr>
<td>Ki67</td>
<td>0.380 0.342 0.352</td>
<td>5%</td>
</tr>
<tr>
<td>pAKT</td>
<td>0.156 0.000 0.000</td>
<td>173%</td>
</tr>
<tr>
<td>pS6</td>
<td>0.348 0.320 0.320</td>
<td>5%</td>
</tr>
<tr>
<td>PStat3</td>
<td>0.336 0.299 0.296</td>
<td>7%</td>
</tr>
<tr>
<td>pEGFR</td>
<td>0.298 0.316 0.313</td>
<td>3%</td>
</tr>
</tbody>
</table>

Provided by Michael Feldman at U. Penn
I want breast, lung, pancreatic carcinoma with 100%, 75%, or 50% cellularity

ISSUE 7-MANY REQUESTS DO NOT FOLLOW THE BIOLOGY OF THE DISEASE - UNDERSTAND THE PATHOLOGY-MANY TUMORS DO NOT GROW WITH THIS LEVEL OF CELLULARITY

These are four examples of lung tumors taken from "DIAGNOSTIC PATHOLOGY OF TUMORS 3rd EDITION BY FLETCHER ET AL." The first example is a typical mucinous tumor; all the cellularity is malignant but the AREA of malignant cells is reduced by mucin. In the second and 4th examples, the AREA OF TUMOR is reduced by stroma and/or necrosis. In the 3rd example the area of malignant cells is about 50%; however the inflammatory cells in the stroma may exceed the number of malignant cells.
1 is an esophageal squamous cell carcinoma whose area of malignant cellularity is reduced to less than 50% by stroma and keratin. 2 is an esophageal adenocarcinoma (arrow points to tumor) whose area is reduced by stroma as is the gastric carcinoma #3. The gastric medullary carcinoma in 4 has more lymphocytes in the stroma than malignant cells of the overall tumor.

I want a breast carcinoma processed within 5 minutes of removal from body.

ISSUE 8- STRICT REQUIREMENTS MAY INDUCE BIAS; BIAS MAY BE CAUSED BY MANY FACTORS SIZE, CELLULARITY, STAGE, GRADE

BIAS IS ESPECIALLY IMPORTANT IN BODILY FLUIDS.
BIAS IN TISSUE RESOURCES

Potential Sources of Bias
Population (age, race, sex)
Patient/Control- Homeostasis
Fasting/Stress/Co-morbidity
Sample Collection- Times Involved
Sample Processing –Type, Volume,
Time of Fixation, Processor
Variables Storage of Blocks -
Length, Temp Slides -Length, Temp
Storage Methods
Standard Operating Procedures (SOPs)
among sites.

BIAS IN TISSUE RESOURCES

Paraffin Processed Solid Tissues -Uses
Biology of Disease
Progression
Diagnosis
Prognosis
Prediction
Early Detection
Surrogate Endpoints
Targets for Therapy
Tumor
Subcategorization

Paraffin Processed Solid Tissues –Methods
Immunohistochemistry
Histochemistry
In Situ Hybridization
RT-PCR
Ultra Structural Analysis
Cytomorphometric Analysis
EFFECT OF DIFFERENT FIXATIVES ON DEMONSTRATION OF CMV TRANSFECTION IN THE SAME LIVER OF A MOUSE

10 % NBF MILLONIGS UNB ZINC F

ETHANOL FORMALIN 70% ETHANOL BOUINS

Note both the patterns and intensity change
ISSUE 9-Is quality control necessary?

With experience, UAB rejects about 15% of diagnoses of cases. Without experience, up to 40% of cases may be in error.

QUALITY CONTROL

Standard practice

A B

A-B
Issue 10- Are tissue arrays better than individual sections in testing molecular markers?

1) Staining 3 cores from one block represent a statistical sample of the tumor.
2) Cores at same time.
3) Saves tissue, effort, and resources.
4) Must include controls; faster evaluation.
5) More noise; not more accurate
I want a whole beating heart
I want 500 samples of synovial cell sarcoma
I want a whole spinal column
I want a 500 gram breast carcinoma
I want breast, lung, pancreatic carcinoma with 100%, 75%, or 50% cellularity

CURRENT ISSUES IN TISSUE RESOURCES
William E. Grizzle MD, PhD
Walter Bell MD
Kathy Sexton MS
Department of Pathology
UAB wgrizzle @uab.edu

I want a whole brain
I want any breast tumor
I want 10 cm of normal ascending aorta removed at surgery
I want breast carcinoma processed within 5 minutes of removal from body