Skip to main content
An official website of the United States government
Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Program Official
Principal Investigator
Xianghong Jasmine Zhou
Awardee Organization

University Of California Los Angeles
United States

Fiscal Year
2025
Activity Code
R01
Early Stage Investigator Grants (ESI)
Not Applicable
Project End Date

Detecting and locating cancer for patients with CT-detected lung nodules

Low-Dose Computed Tomography (LDCT) has been demonstrated to reduce lung cancer mortality by 20% for high-risk current and former smokers. However, 25% of the subjects in the NLST demonstrated abnormalities and a large fraction of those lesions were determined to be false-positives. There is an unmet need to accurately and non-invasively identify early-stage aggressive lung cancers and distinguish lesions that are life threatening from those that are not. Recently cell-free DNA (cfDNA) in human blood has emerged as an ideal source for cancer detection. In this proposal, we develop an integrated system, CancerRadar, consisting of (1) an experimental assay, cfMethyl-Seq, for cost-effective genome-wide methylation profiling of cfDNA, offering >10 fold enrichment over Whole Genome Bisulfite Sequencing (WGBS) in profiling CpG islands; and (2) a computational framework to extract various information from cfMethyl-Seq data, including cfDNA methylation, cfDNA fragment size, copy number variation (CNV), and microbial composition, and perform multi-feature ensemble learning for detecting malignant lung nodule and locating its primary tumor sites. We will validate CancerRadar with several clinical cohorts. Compared to the commonly used small panels focusing on one type of markers, CancerRadar profiles and integrates genome-wide profiles of multiple genetic/epigenetic features, therefore can robustly capture the very small proportion of tumor-derived cfDNA fragments, comprehensively diagnose patients with heterogeneous cancer pathogenesis, and learn and exploit newly significant features as training sample size grow.