Principal Investigator

Frank D.
Mckeon
Awardee Organization

University Of Houston
United States

Fiscal Year
2023
Activity Code
R01
Early Stage Investigator Grants (ESI)
Not Applicable
Project End Date

Clonal Reconstruction and Targeting of the Correa Sequence

It is now well established that epithelial cancers arise in a multi-decade process from precancerous lesions. Esophageal adenocarcinoma, a cancer whose incidence has risen 5-fold since 1950, initiates with precancerous lesions known as “Barrett's esophagus”, progresses to dysplasia, and finally emerges as malignant esophageal adenocarcinoma along a path that parallels the Correa Sequence for gastric adenocarcinoma. As the average life expectancy of patients diagnosed with esophageal adenocarcinoma is approximately one-year, considerable efforts are underway to define its Correa sequence, and especially its pre-malignant stages, as potential targets for interdiction ahead of the onset of malignant disease. Toward this end, we have applied novel stem cell cloning technologies originally developed in our laboratories for normal human gastrointestinal tract stem cells to reconstructing the Correa sequence in patients with early esophageal adenocarcinoma. Significantly, each of these patient-matched endoscopic biopsies of Barrett's, dysplasia, and esophageal adenocarcinoma yields discrete populations of stem cells that respectively yield intestinal metaplasia, dysplasia (but not tumors), and aggressive adenocarcinoma following transplantation to immunodeficient mice. From a detailed molecular genetics analysis of nearly 100 independent clones from across the Barrett's, dysplasia, and adenocarcinoma lesions of one patient, we have been able to reconstruct, at unprecedented resolution, both the direct phylogenetic sequence that led to this tumor as well as identify “dead-ends” at both the Barrett's and dysplasia stages that did not contribute to the final tumor. Moreover, each of the cloned stem cells of Barrett's, dysplasia, and adenocarcinoma lesions represent permanent lines that have enabled powerful approaches to drug discovery that has culminated in leads that selectively target the entire Correa sequence while sparing normal esophageal stem cells. In three specific aims, we will 1.) clonally reconstruct the Correa sequence from 10 patients with early esophageal adenocarcinoma; 2.) establish high-throughput screens involving co-cultures of normal esophageal and Correa sequence stem cells for lead discovery; and 3.) develop in vivo xenograft models of patient-matched normal esophageal and Correa sequence stem cells for validating lead combinations targeting these lesions. Based on extensive preliminary studies, we anticipate the analysis of patient-matched stem cells of these progressive lesions will provide fundamental insights into the evolution of esophageal adenocarcinoma and as well as epithelial cancers in general. From the standpoint of filling important gaps in patient care, the drug discovery enabled by these sets of lesional stem cells offers promising and novel interventions to prevent to onset of esophageal adenocarcinoma as well as ones to address disease that has already taken hold.

Publications

  • Duleba M, Yamamoto Y, Neupane R, Rao W, Xie J, Qi Y, Liew AA, Niroula S, Zhang Y, Mahalingam R, Wang S, Goller K, Ajani JA, Vincent M, Ho KY, Hou JK, Hyams JS, Sylvester FA, Crum CP, McKeon F, Xian W. Cloning of ground-state intestinal stem cells from endoscopic biopsy samples. Nature protocols. 2020 May;15(5):1612-1627. Epub 2020 Apr 1. PMID: 32238950
  • Xian W, Duleba M, Yamamoto Y, Vincent M, McKeon F. Biobanking Organoids or Ground-State Stem Cells? Journal of clinical medicine. 2018 Dec 16;7. (12). PMID: 30558346
  • Wang S, Rao W, Hoffman A, Lin J, Li J, Lin T, Liew AA, Vincent M, Mertens TCJ, Karmouty-Quintana H, Crum CP, Metersky ML, Schwartz DA, Davies PJA, Stephan C, Jyothula SSK, Sheshadri A, Suarez EE, Huang HJ, Engelhardt JF, Dickey BF, Parekh KR, McKeon FD, Xian W. Cloning a profibrotic stem cell variant in idiopathic pulmonary fibrosis. Science translational medicine. 2023 Apr 26;15(693):eabp9528. Epub 2023 Apr 26. PMID: 37099633
  • Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal research reviews. 2021 Mar;41(2):961-1021. Epub 2020 Nov 6. PMID: 33155698
  • Xian W, Duleba M, Zhang Y, Yamamoto Y, Ho KY, Crum C, McKeon F. The Cellular Origin of Barrett's Esophagus and Its Stem Cells. Advances in experimental medicine and biology. 2019;1123:55-69. PMID: 31016595
  • Duleba M, Qi Y, Mahalingam R, Liew AA, Neupane R, Flynn K, Rinaldi F, Vincent M, Crum CP, Ho KY, Hou JK, Hyams JS, Sylvester FA, McKeon F, Xian W. An Efficient Method for Cloning Gastrointestinal Stem Cells From Patients via Endoscopic Biopsies. Gastroenterology. 2019 Jan;156(1):20-23. Epub 2018 Oct 6. PMID: 30296437
  • Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, Mahalingam R, Neupane R, Liew AA, Vincent M, Okuda K, O'Neal WK, Boucher RC, Dickey BF, Wechsler ME, Ibrahim O, Engelhardt JF, Mertens TCJ, Wang W, Jyothula SSK, Crum CP, Karmouty-Quintana H, Parekh KR, Metersky ML, McKeon FD, Xian W. Regenerative Metaplastic Clones in COPD Lung Drive Inflammation and Fibrosis. Cell. 2020 May 14;181(4):848-864.e18. Epub 2020 Apr 15. PMID: 32298651
  • Rao W, Niroula S, Wang S, Vincent M, McKeon F, Xian W. Protocol for Cloning Epithelial Stem Cell Variants from Human Lung. STAR protocols. 2020 Sep 18;1. (2). Epub 2020 Jul 9. PMID: 33015646
  • Hao D, He S, Harada K, Pizzi MP, Lu Y, Guan P, Chen L, Wang R, Zhang S, Sewastjanow-Silva M, Abdelhakeem A, Shanbhag N, Bhutani M, Han G, Lee JH, Zhao S, Weston B, Blum Murphy M, Waters R, Estrella JS, Roy-Chowdhuri S, Gan Q, Lee JS, Peng G, Hanash SM, Calin GA, Song X, Zhang J, Song S, Wang L, Ajani JA. Integrated genomic profiling and modelling for risk stratification in patients with advanced oesophagogastric adenocarcinoma. Gut. 2021 Nov;70(11):2055-2065. Epub 2020 Dec 17. PMID: 33334899