Program Director
Principal Investigator
Bechien
Wu
Awardee Organization
Kaiser Foundation Research Institute
United States
Fiscal Year
2022
Activity Code
R01
Early Stage Investigator Grants (ESI)
Not Applicable
Project End Date
NIH RePORTER
For more information, see NIH RePORTER Project 5R01CA230442-04
PRedictiOn Algorithms for the DeTECTion of Early Stage Pancreatic Cancer (PRO-TECT)
Pancreatic cancer is the fourth leading cause of cancer death in the United States. A major reason for the lethal nature of this disease is the lack of effective strategies for early detection. As a result, the vast majority of cancers are detected at a very late stage. The delay in diagnosis and treatment of pancreatic cancer could be due to many reasons including, 1) lack of a clear quantitative or algorithm-based definition of a high-risk population who would benefit from active surveillance, 2) suboptimal use of image findings that could potentially foretell a growing tumor, 3) system or referral-related delay from time of abnormal finding to diagnosis and treatment. Methods to accelerate the detection of pancreatic cancer leading to increased proportion of early stage tumors at the time of diagnosis have the potential to have an immediate impact on survival. The objective of the proposed work is to establish a platform for development and implementation of a data-driven approach for detection of early stage pancreatic cancer within an integrated care setting. Specifically, the proposed work will focus on development of empiric algorithms for prediction of early stage pancreatic cancer as well as systematic pancreatic cancer-risk stratification of patients based on natural language processing-aided extraction of pancreatic features from existing pre-diagnostic imaging reports to enhance understanding of the natural history of disease progression. Finally, we will conduct a prospective cohort study to assess the accuracy of an algorithm-based approach for detection of early stage pancreatic cancer.
Publications
- Wu BU. Diabetes and pancreatic cancer: recent insights with implications for early diagnosis, treatment and prevention. Current opinion in gastroenterology. 2021 Sep 1;37(5):539-543. PMID: 34387256
- Chen W, Zhou Y, Xie F, Butler RK, Jeon CY, Luong TQ, Zhou B, Lin YC, Lustigova E, Pisegna JR, Kim S, Wu BU. Derivation and External Validation of Machine Learning-Based Model for Detection of Pancreatic Cancer. The American journal of gastroenterology. 2023 Jan 1;118(1):157-167. Epub 2022 Oct 13. PMID: 36227806
- Pereira SP, Oldfield L, Ney A, Hart PA, Keane MG, Pandol SJ, Li D, Greenhalf W, Jeon CY, Koay EJ, Almario CV, Halloran C, Lennon AM, Costello E. Early detection of pancreatic cancer. The lancet. Gastroenterology & hepatology. 2020 Jul;5(7):698-710. Epub 2020 Mar 2. PMID: 32135127
- Chen W, Zhou Y, Asadpour V, Parker RA, Puttock EJ, Lustigova E, Wu BU. Quantitative Radiomic Features From Computed Tomography Can Predict Pancreatic Cancer up to 36 Months Before Diagnosis. Clinical and translational gastroenterology. 2023 Jan 1;14(1):e00548. PMID: 36434803