Skip to main content
An official website of the United States government

Translational Liver Cancer (TLC) Consortium

The Translational Liver Cancer (TLC) Consortium was established to advance translational research focused on early detection of liver cancer. The consortium goals are to conduct studies to improve the surveillance of liver cancer in high-risk populations, increase the fraction of liver cancer detected at an early stage, and better stratify patients at risk of developing liver cancer.

On This Page

  • All Heading 2s will automatically be pulled in to this list.
  • Do not edit the content on this template.

About TLC

Liver cancer is the third most common cause of cancer-related death worldwide, and in the United States, liver cancer represents about 5% of all cancer deaths. The incidence of hepatocellular carcinoma (HCC) is three times higher in men than women, and there are racial and ethnic differences in liver cancer occurrence. The liver cancer burden is higher in African Americans, Hispanics, and Asians. The etiological/risk factors for liver cancer include viral hepatitis (Hepatitis B virus and Hepatitis C virus), non-alcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD). Approximately 80-90% of HCC occurs in patients with underlying liver cirrhosis. Patients with advanced cirrhosis represent a high-risk group for liver cancer. This Consortium consists of five Translational Research Centers (supported by RFA-CA-22-031, previously by RFA-CA-17-025) and one Data Management and Coordinating Center (supported by RFA-CA-22-032, previously by RFA-CA-17-028).

These multidisciplinary teams address the following areas:

  • Improving the surveillance for liver cancers in patients with cirrhosis;
  • Increasing the detectability of liver cancers at early stages; and/or
  • Approaches to better stratify patients with cirrhosis, who are at risk of developing liver cancer.

To achieve these goals, the consortium consists of clinical researchers with multidisciplinary expertise in such areas as early cancer detection, biomarkers, surveillance, imaging, and biospecimen science.

Grantee Details

PI Name Sort descending PI Organization Title Grant Number Program Official
Winger, Joseph Giles

Duke University
United States

Engage: A Randomized Controlled Trial Testing the Efficacy of a Telehealth-Delivered Psychosocial Intervention to Decrease Symptom Interference in Patients with Advanced Cancer 5R01CA291768-02 Brennan Streck, Ph.D., RN, M.P.H.
Winger, Joseph Giles

Duke University
United States

Engage: A Randomized Controlled Trial Testing the Efficacy of a Telehealth-Delivered Psychosocial Intervention to Decrease Symptom Interference in Patients with Advanced Cancer 5R01CA291768-02 Brennan Streck, Ph.D., RN, M.P.H.
Winger, Joseph Giles

Duke University
United States

Engage: A Randomized Controlled Trial Testing the Efficacy of a Telehealth-Delivered Psychosocial Intervention to Decrease Symptom Interference in Patients with Advanced Cancer 5R01CA291768-02 Brennan Streck, Ph.D., RN, M.P.H.
Winters-Stone, Kerri M

Oregon Health & Science University
United States

Patterns and predictors of symptoms, falls, and functioning across treatment and recovery in patients treated with neurotoxic chemotherapy for cancer 5R01CA248059-05 Goli Samimi, Ph.D., M.P.H.
Winters-Stone, Kerri M

Oregon Health & Science University
United States

Patterns and predictors of symptoms, falls, and functioning across treatment and recovery in patients treated with neurotoxic chemotherapy for cancer 5R01CA248059-05 Goli Samimi, Ph.D., M.P.H.
Wolpin, Brian Matthew

Dana-Farber Cancer Inst
United States

Altered metabolism and machine learning for pancreatic cancer early detection 5U01CA210171-09 Matthew Young, Ph.D.
Wong, David T

University Of California Los Angeles
United States

EFIRM Liquid Biopsy Research Laboratory: Early Lung Cancer Assessment 4U01CA233370-08 Nicholas Hodges, Ph.D.
Wright, Alexi A

Dana-Farber Cancer Inst
United States

Randomized trial of REVITALIZE: A telehealth intervention to reduce fatigue interference among adults with advanced ovarian cancer on PARP inhibitors 5R01CA289547-02 Goli Samimi, Ph.D., M.P.H.
Wright, Alexi A

Dana-Farber Cancer Inst
United States

Randomized trial of REVITALIZE: A telehealth intervention to reduce fatigue interference among adults with advanced ovarian cancer on PARP inhibitors 5R01CA289547-02 Goli Samimi, Ph.D., M.P.H.
Wu, Yun

State University Of New York At Buffalo
United States

Lung Cancer Early Detection and Immunotherapy Response Prediction and Monitoring with an Exo-PROS Liquid Biopsy Assay 4R01CA272827-04 Christos Patriotis, Ph.D., M.Sc.
Xiao, Yi

University Of Tx Md Anderson Can Ctr
United States

Exploring new strategy for breast cancer immunoprevention by targeting histamine receptor H1 5R21CA286318-02 Anda Vlad, M.D., Ph.D.
Xu, Xiangxi Mike

University Of Miami School Of Medicine
United States

Countering microtubule stabilization within hair follicles in ovarian cancer chemotherapy 5R01CA286527-02 Rachel Altshuler, Ph.D.
Xu, Chunhui

Emory University
United States

High-throughput assessment of chemotherapy-induced cardiotoxicity in 3D human cardiomyocytes 1R21CA285254-01A1 Eileen Dimond, R.N., M.S.
Xu, Chunhui

Emory University
United States

High-throughput assessment of chemotherapy-induced cardiotoxicity in 3D human cardiomyocytes 1R21CA285254-01A1 Eileen Dimond, R.N., M.S.
Xu, Xiangxi Mike

University Of Miami School Of Medicine
United States

Countering microtubule stabilization within hair follicles in ovarian cancer chemotherapy 5R01CA286527-02 Rachel Altshuler, Ph.D.

Program Contact(s)

Sudhir Srivastava, Ph.D., M.P.H.
Email: sudhir.srivastava@nih.gov

Sidney Fu, M.D.
Email: sidney.fu@nih.gov

Matthew Young, Ph.D.
Email: matthew.young@nih.gov

Guillermo Marquez, Ph.D.
Email: guillermo.marquez@nih.gov