Skip to main content
An official website of the United States government
Principal Investigator
Seema Ahsan Khan
Awardee Organization

Northwestern University At Chicago
United States

Fiscal Year
2019
Activity Code
R01
Project End Date

Progesterone Signaling and Blockade in Human Breast Tumorigenesis and Prevention

Lifetime progesterone (P4) exposure is an important contributor to breast cancer risk, as reflected in the risk associated with the lifetime number of ovulatory cycles, increased breast epithelial proliferation accompanying the P4 peak in the luteal phase, and the higher breast cancer risk of exogenous progestin users. Moreover, the tumors seen with progestin use appear to be more aggressive. This clinical and epidemiological evidence points to progesterone blockade as an excellent candidate strategy for breast cancer prevention. A new generation of selective progesterone receptor modulators (SPRMs) is now available; one of these (telapristone acetate, TPA) inhibits P4-driven proliferation of breast cancer cells, and attenuates P4-driven tumor growth in carcinogen treated rats. We have identified a novel set of genes associated with proliferation of breast cancer cells in response to the progestin, R5020 that are effectively suppressed by TPA. Based on these data as well as findings from others, we hypothesize that P4 promotes a pro-proliferative and tumor permissive phenotype which supports breast cancer development, suppression of which by SPRMs will significantly decrease breast cancer risk. The breast-specific effects and mechanisms for potential breast cancer protection of SPRMs are unknown. We propose to define the mechanisms by which SPRMs antagonize PR at the molecular level, and the role of coactivators and corepressors. In addition, the efficacy of SPRMs in antagonizing the proliferative response to P4 will be determined, to guide selection of patients for SPRM therapy. In Aim 1, we will determine the mechanisms by which SPRMs regulate PR activity in breast cells. The ability of SPRMs to affect binding to the PR will be studied; we will perform ChIP-Seq to determine how SPRMs affect PR recruitment to the genome in a global manner, and the involvement of the nuclear receptor corepressors, NCOR and SMRT as well as other transcription cofactors will be assessed. In Aim 2, we will determine if SPRMs inhibit the P4-mediated tumor permissive phenotype; we have defined a 16 gene panel, which is associated with P4 driven proliferation. We will test this in vitro, in human mammary organoids, to determine whether SPRMs inhibit expression of these signature genes. We will also study the ability of SPRMs to inhibit mammary stem cell expansion associated with P4 exposure, and the proliferation and growth of tumors that carry BRCA1 mutations. In Aim 3, we will evaluate the expression P4-response genes in human clinical samples, a) in high and low ambient progesterone environments and b) following treatment with telapristone acetate. These experiments will 1) define modes of actions of SPRMs in cells and tissues where PR signaling is active, 2) relate inhibition of proliferation of breast cells, and of stem cell expansion, to speciic genetic pathways; and 3) demonstrate utility of these markers in human breast samples. These results will significantly advance the field of breast cancer prevention in novel directions, providing both new, effective agents, particularly for premenopausal women.

Publications

  • Ranjan M, Lee O, Cottone G, Mirzaei Mehrabad E, Spike BT, Zeng Z, Yadav S, Chatterton R, Kim JJ, Clare SE, Khan SA. Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of progesterone action in the mouse mammary gland. Breast cancer research : BCR. 2021 Aug 3;23(1):78. PMID: 34344445
  • Abekah-Nkrumah G. Trends in utilisation and inequality in the use of reproductive health services in Sub-Saharan Africa. BMC public health. 2019 Nov 21;19(1):1541. PMID: 31752773
  • Lee O, Sullivan ME, Xu Y, Rogers C, Muzzio M, Helenowski I, Shidfar A, Zeng Z, Singhal H, Jovanovic B, Hansen N, Bethke KP, Gann PH, Gradishar W, Kim JJ, Clare SE, Khan SA. Selective Progesterone Receptor Modulators in Early-Stage Breast Cancer: A Randomized, Placebo-Controlled Phase II Window-of-Opportunity Trial Using Telapristone Acetate. Clinical cancer research : an official journal of the American Association for Cancer Research. 2020 Jan 1;26(1):25-34. Epub 2019 Sep 30. PMID: 31570566
  • Davaadelger B, Choi MR, Singhal H, Clare SE, Khan SA, Kim JJ. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast cancer research : BCR. 2019 Nov 26;21(1):124. PMID: 31771627
  • Davaadelger B, Murphy AR, Clare SE, Lee O, Khan SA, Kim JJ. Mechanism of Telapristone Acetate (CDB4124) on Progesterone Receptor Action in Breast Cancer Cells. Endocrinology. 2018 Oct 1;159(10):3581-3595. PMID: 30203004
  • Lee O, Bosland MC, Wang M, Shidfar A, Hosseini O, Xuei X, Patel P, Schipma MJ, Helenowski I, Kim JJ, Clare SE, Khan SA. Selective progesterone receptor blockade prevents BRCA1-associated mouse mammary tumors through modulation of epithelial and stromal genes. Cancer letters. 2021 Nov 1;520:255-266. Epub 2021 Jul 27. PMID: 34329741