Ability of thigh-worn ActiGraph and activPAL monitors to classify posture and motion.

Author(s): Steeves JA,  Bowles HR,  McClain JJ,  Dodd KW,  Brychta RJ,  Wang J,  Chen KY

Journal: Med Sci Sports Exerc

Date: 2015 May

Major Program(s) or Research Group(s): BRG

PubMed ID: 25202847

PMC ID: PMC6330899

Abstract: PURPOSE: This study compared sitting, standing, and stepping classifications from thigh-worn ActiGraph and activPAL monitors under laboratory and free-living conditions. METHODS: Adults wore both monitors on the right thigh while performing activities (six sitting, two standing, nine stepping, and one cycling) and writing on a whiteboard with intermittent stepping under laboratory conditions (n = 21) and under free-living conditions for 3 d (n = 18). Percent time correctly classified was calculated under laboratory conditions. Between-monitor agreement and weighted κ were calculated under free-living conditions. RESULTS: In the laboratory, both monitors correctly classified 100% of standing time and >95% of the time spent in four of six sitting postures. Both monitors demonstrated misclassification of laboratory stool sitting time (ActiGraph 14% vs. activPAL 95%). ActivPAL misclassified 14% of the time spent sitting with legs outstretched; ActiGraph was 100% accurate. Monitors were >95% accurate for stepping, although ActiGraph was less so for descending stairs (86%), ascending stairs (92%), and running at 2.91 m·s(-1) (93%). Monitors classified whiteboard writing differently (ActiGraph 83% standing/15% stepping vs. activPAL 98% standing/2% stepping). ActivPAL classified 93% of cycling time as stepping, whereas ActiGraph classified <1% of cycling time as stepping. During free-living wear, monitors had substantial agreement (86% observed; weighted κ = 0.77). Monitors classified similar amounts of time as sitting (ActiGraph 64% vs. activPAL 62%). There were differences in time recorded as standing (ActiGraph 21% vs. activPAL 27%) and stepping (ActiGraph 15% vs. activPAL 11%). CONCLUSIONS: Differences in data processing algorithms may have resulted in the observed disagreement in posture and activity classification between thigh-worn ActiGraph and activPAL. Despite between-monitor agreement in classifying sitting time under free-living conditions, ActiGraph appears to be more sensitive to free-living upright walking motions than activPAL.