Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation.

Author(s): Zhang H,  Freitas D,  Kim HS,  Fabijanic K,  Li Z,  Chen H,  Mark MT,  Molina H,  Martin AB,  Bojmar L,  Fang J,  Rampersaud S,  Hoshino A,  Matei I,  Kenific CM,  Nakajima M,  Mutvei AP,  Sansone P,  Buehring W,  Wang H,  Jimenez JP,  Cohen-Gould L,  Paknejad N,  Brendel M,  Manova-Todorova K,  Magalhães A,  Ferreira JA,  Osório H,  Silva AM,  Massey A,  Cubillos-Ruiz JR,  Galletti G,  Giannakakou P,  Cuervo AM,  Blenis J,  Schwartz R,  Brady MS,  Peinado H,  Bromberg J,  Matsui H,  Reis CA,  Lyden D

Journal: Nat Cell Biol

Date: 2018 Mar

Major Program(s) or Research Group(s): PARR

PubMed ID: 29459780

PMC ID: PMC5931706

Abstract: The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.