White blood cell DNA methylation and risk of breast cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO).

Author(s): Sturgeon SR,  Pilsner JR,  Arcaro KF,  Ikuma K,  Wu H,  Kim SM,  Chopra-Tandon N,  Karpf AR,  Ziegler RG,  Schairer C,  Balasubramanian R,  Reckhow DA

Journal: Breast Cancer Res

Date: 2017 Aug 18

Major Program(s) or Research Group(s): PLCO

PubMed ID: 28821281

PMC ID: PMC5563066

Abstract: BACKGROUND: Several studies have suggested that global DNA methylation in circulating white blood cells (WBC) is associated with breast cancer risk. METHODS: To address conflicting results and concerns that the findings for WBC DNA methylation in some prior studies may reflect disease effects, we evaluated the relationship between global levels of WBC DNA methylation in white blood cells and breast cancer risk in a case-control study nested within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) cohort. A total of 428 invasive breast cancer cases and 419 controls, frequency matched on age at entry (55-59, 60-64, 65-69, ≥70 years), year of entry (on/before September 30, 1997, on/after October 1, 1997) and period of DNA extraction (previously extracted, newly extracted) were included. The ratio of 5-methyl-2' deoxycytidine [5-mdC] to 2'-deoxyguanine [dG], assuming [dG] = [5-mdC] + [2'-deoxycytidine [dC]] (%5-mdC), was determined by liquid chromatography-electrospray ionization-tandem mass spectrometry, an especially accurate method for assessing total genomic DNA methylation. RESULTS: Odds ratio (OR) estimates and 95% confidence intervals (CI) for breast cancer risk adjusted for age at entry, year of entry, and period of DNA extraction, were 1.0 (referent), 0.89 (95% CI, 0.6-1.3), 0.88 (95% CI, 0.6-1.3), and 0.84 (95% CI, 0.6-1.2) for women in the highest compared to lowest quartile levels of %5md-C (p for trend = .39). Effects did not meaningfully vary by time elapsed from WBC collection to diagnosis. DISCUSSION: These results do not support the hypothesis that global DNA hypomethylation in WBC DNA is associated with increased breast cancer risk prior to the appearance of clinical disease.